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Abstract—Program obfuscation is a popular cryptographic
construct with a wide range of uses such as IP theft prevention. Al-
though cryptographic solutions for program obfuscation impose
impractically high overheads, a recent breakthrough leveraging
trusted hardware has shown promise. However, the existing
solution is based on special-purpose trusted hardware, restricting
its use-cases to a limited few.

In this paper, we first study if such obfuscation is feasible
based on commodity trusted hardware, Intel SGX, and we
observe that certain important security considerations are not
afforded by commodity hardware. In particular, we found that
existing obfuscation/obliviousness schemes are insecure if directly
applied to Intel SGX primarily due to side-channel limitations.
To this end, we present OBFUSCURO, the first system providing
program obfuscation using commodity trusted hardware, Intel
SGX. The key idea is to leverage ORAM operations to perform
secure code execution and data access. Initially, OBFUSCURO
transforms the regular program layout into a side-channel-
secure and ORAM-compatible layout. Then, OBFUSCURO ensures
that its ORAM controller performs data oblivious accesses in
order to protect itself from all memory-based side-channels.
Furthermore, OBFUSCURO ensures that the program is secure
from timing attacks by ensuring that the program always runs
for a pre-configured time interval. Along the way, OBFUSCURO
also introduces a systematic optimization such as register-based
ORAM stash. We provide a thorough security analysis of
OBFUSCURO along with empirical attack evaluations showing
that OBFUSCURO can protect the SGX program execution from
being leaked by access pattern-based and timing-based channels.
We also provide a detailed performance benchmark results in
order to show the practical aspects of OBFUSCURO.

I. INTRODUCTION

Program obfuscation [1, 2] is a popular cryptographic
construct which has interesting and wide-ranging applications
towards protecting the intellectual property of software owners.
As computing trends are rapidly shifting towards cloud-based
computing, there exists a strong need for systems supporting
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this notion of program obfuscation. One could envision various
cases where the owner of a program would want to shield his/her
proprietary algorithm from the cloud provider and/or other
tenants. For example, consider a company like 23andMe [3],
the frontrunner in DNA testing, which could prevent the theft
of their algorithm from competitors despite it being hosted on
cloud servers.

Under program obfuscation, a sender, who owns a program,
transforms it to create an obfuscated version of the program
which is: (a) functionally identical to the original version,
and (b) runs for a fixed time before returning an output. The
sender then sends this obfuscated program to a receiver. The
receiver runs the obfuscated program within a black box-like
environment — the receiver cannot see (or infer) intermediate
computational results and/or footprints from the obfuscated
program. Consequently, even though the receiver can run the
obfuscated program using any input of his/her choice, he/she
will learn nothing about the original program. Therefore, as far
as the attacker is concerned, he/she is interacting with a virtual
black box, which takes an input and gives the intended output.

In the past, there has been significant (mostly cryptographic)
research [4–7] in achieving program obfuscation, but with
crippling performance overheads. Recently, there has been
a systematic breakthrough, HOP [8], in achieving program
obfuscation through relaxed assumptions of trust on the
underlying hardware. However, HOP relies on special-purpose
hardware, severely limiting its practicality. In particular, their
system relies on custom RISC-V processors to conveniently
transplant the root of trust to implement the core security
logic and securely contain the program code. We believe
such convenience is not free — it would be challenging and
unrealistic to deploy such custom-built hardware to a majority
of end-user machines or cloud-computing machines.

In this paper, we propose OBFUSCURO, the first sys-
tem achieving program obfuscation on commodity hardware.
Unlike existing work relying on special-purpose hardware,
OBFUSCURO is specifically designed to run on Intel SGX,
already shipped with millions of machines in the market. Since
the trusted boundary of Intel SGX terminates at the CPU,
OBFUSCURO enforces the security protocol of Oblivious RAM
(ORAM) [9] to support secure code/data access between CPU
and memory subsystems, similar to HOP. However, it is quite
challenging to support program obfuscation on commodity
hardware since commodity hardware comes pre-packaged with
a plethora of features which can be abused to invalidate a
key security assumption behind program obfuscation (i.e., the
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obfuscated program should be running within a black box-
like environment). Furthermore, the unprivileged execution of
Intel SGX ensures that these features cannot be controlled (or
disabled) by SGX programs.

More specifically, researchers have identified that Intel SGX
has critical access pattern-based side-channel security flaws.
These allow adversaries to infer computational semantics within
SGX thereby breaking the black box execution environment.
Memory-based side-channels, namely page fault [10, 11],
cache [12–14], and branch-prediction [15] attacks, allow system
components with high privileges, e.g., OS, to infer substantial
information from the execution of an SGX enclave. For example,
previous work [13] has shown how cache attacks can be abused
to leak an RSA private key from an SGX enclave.

As far as access pattern-based side-channels are concerned,
the root cause of the problem is that it is challenging to
completely hide memory access patterns from privileged
adversaries in the current Intel SGX architecture. The reason for
this is that the CPU is designed to rely on other subsystems to
perform computation. In particular, Intel SGX is not designed to
secure communication patterns between the CPU and memory-
management hardware units (e.g., the MMU/TLB, cache,
DRAM, branch-predictors, etc.). For performance reasons, the
communication channels and hardware units are designed to be
partially shared between trusted and untrusted entities, allowing
potentially adversarial entities to observe and collect memory
traces exhibited by an SGX enclave.

To address these challenges, OBFUSCURO1 makes use of
three main ideas. First, OBFUSCURO employs a data-oblivious
ORAM implementation. Our work improves on the previously
proposed secure ORAM implementations [16–18] by designing
an efficient register-based stash. Second, OBFUSCURO designs
side-channel resistant scratchpad-based code execution and
data access models, in order to neutralize the memory access
patterns observed by attackers as well as bridge the gap
between traditional ORAM and native program execution.
Lastly, OBFUSCURO ensures start-to-end obfuscation of the
target programs by providing execution time normalization
to all applications thereby protecting the programs against
information leakage through timing-based channels.

Our implementation of OBFUSCURO is based on the LLVM
compiler suite with an installed runtime library. Through
compiler instrumentation, we transform a native SGX program’s
code into cache-line-granular (and ORAM-compatible) basic
blocks. OBFUSCURO restricts each basic block to a single
data and code access, at fixed offsets within the basic blocks
thereby neutralizing branch targets. The code and data access
instructions are translated into equivalent branch instructions
targeting OBFUSCURO’s runtime library functions. The runtime
library obliviously serves the program with code and data blocks
extracted from the ORAM storage onto pre-allocated memory
regions called C-Pad and D-Pad respectively. Code execution
and data access (irrespective of the target program) is always
performed at these locations, thereby neutralizing the program’s
memory footprints. Lastly, the program is instrumented to keep
executing till a user-configured time interval has elapsed to
mitigate the threat of timing channels.

1OBFUSCURO is a play on words combining Obscuro and Obfuscation. The
former is a memory charm in the Harry Potter series.

Furthermore, we highlight that although OBFUSCURO’s
performance overhead is quite high, it is still much faster
than the state-of-the-art cryptographic obfuscation schemes. In
particular, cryptographic obfuscation techniques (which rely on
homomorphic encryption and/or circuit construction as security
primitives) are still far away to be adopted in practice largely
due to severe performances overheads or limited generality to
support generic programs (detailed discussion in §IX). However,
leveraging the root of trust in the underlying commodity
hardware, OBFUSCURO demonstrates comparatively moderate
performance overheads on real-world programs.

In broad terms, the contributions made by this paper can
be described as follows:

• We dissect commodity-off-the-shelf hardware to find out
the key hardware features which hinder the adoption
of program obfuscation in Intel SGX. We also provide
a comparison with existing work illustrating how their
approaches are insecure if directly applied to Intel SGX.

• We present, OBFUSCURO, the first program obfuscation
system built on top of commodity hardware. Motivated by
the hardware limitations of Intel SGX, OBFUSCURO pro-
vides a complete start-to-end program obfuscation solution
which can be readily-adopted without any modifications
to legacy code written for Intel SGX.

• We provide a thorough security analysis of OBFUSCURO
showing how it can prevent information leakage through
both access pattern-based and timing-based side-channels.

• We provide a performance comparison of OBFUSCURO
using a diverse set of benchmarking applications as well
as a real-world application, OpenSSL. Our experiments
indicate that OBFUSCURO incurs an average overhead
of 51× over native SGX execution for our custom
benchmarks and an overhead of 16−57× while executing
OpenSSL [19].

II. BACKGROUND

A. Intel SGX

Intel SGX [20] is a new set of x86 instructions which were
introduced with the Intel Skylake architecture. SGX allows
user-level programs to create a protected memory region called
an enclave which is inaccessible from other user-level programs
as well as privileged components such as BIOS, OS, hypervisor,
etc. At boot-time, the processor reserves contiguous physical
memory pages, called the Enclave Page Cache (EPC). The CPU
explicitly revokes access to EPC pages outside an enclave. Each
enclave process is provided its own virtual address space which
is divided into trusted and untrusted parts. The trusted part is
allocated pages from the EPC to provide memory integrity and
confidentiality. The page tables that deal with translation of
virtual to physical address for EPC pages are maintained by
untrusted system components.

B. SGX Side-Channel Attacks

The three most prominent categories of side-channel attacks
against Intel SGX are summarized as follows.

Page Table Attacks. As with regular non-enclave processes,
the untrusted OS handles page tables for the EPC pages to
flexibly provision EPC resources. Previous works [10, 11] have
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shownthataprfivfiflegedattackercanexpflofitpagefaufltsand
pagetabflewaflksfinordertogafinpage-fleveflgranuflarfinsfight
fintotheexecutfionofanencflaveprocess.SfincetheOShandfles
thepagetabfles,fitcanfinvaflfidateaccessontoaflflEPCpages
whfichwfiflflresufltfinpagefauflts,therebycapturfingtraceofaflfl
pageaccessesperformedbytheencflave.Sfimfiflarfly,theattacker
canmonfitortheaccess/dfirtybfitpresentwfithfinthepagetabfle
tofindoutwhfichpagewasflastaccessedwfithoutfinvokfinga
pagefauflt.

CacheAttacks. Cachesaredesfignedtoreducetheaccess
flatencyofcodeanddatabyexpflofitfingtemporaflandspatfiafl
flocaflfityofanappflficatfion’sexecutfion.Thecachesaredfivfided
fintoanumberofcache-sets,whficharefurtherdfivfidedfintofixed-
sfizecache-flfines(64B).Recentreports[12–14]haveshown
thattheSGXencflavefisfinsecureagafinstthePrfime+Probe[21]
attack.Aspartofthfisattack,theattackerrunsanattackappflfi-
catfionwhfichmonfitorsthecacheusageofavfictfimappflficatfion,
performfingsomesecurfitycrfitficafloperatfions.DurfingthePrfime
phase,theattackerfiflflsoneormorecachesetswfithhfis/her
owndataanddurfingtheProbephase,he/shetrfiestoaccess
thedata.Ifthevfictfimhasaccessedanyofthesecachesets,
fitmusthaveevfictedsomeofthecacheflfinesoftheattacker,
andsubsequentaccessbytheattackerwfiflfltakeflongertfime
thanfiftheflfineshadnotbeenevficted.Therefore,anattacker,
wfithprfiorknowfledgeofthevfictfimappflficatfion,canfinferwhat
operatfiontookpflace(assumfingdfifferentoperatfionswfiflflaccess
dfifferentcachesets).

BranchPredfictfion Attacks. LastBranchRecord(LBR)
savesthehfistoryoftherecentflytakenbrancheswhfichcan
bereferencedbydeveflopersforfurtheroptfimfizatfionTheLBR
storesfinformatfionfincfludfingsource/targetaddressofabranch,
andaflagwhetherthebranchfistakenornot,etc.SGX
dfisabflesdfirectreportfingoftheLBRfinformatfionoutsfidethe
encflave.However,recentreports[15]haveshownhowfitcan
befindfirectflyfinferredfromoutsfidetheencflave.Toperformthfis
attack,theattackerfleveragesprfiorfinformatfiononthesource
anddestfinatfionsofthebranchesfinatargetprogram.Next,the
attackerwrfitesashadowcodeforasetofbrancheswfithfinthe
program.Theattackerexecutesbothvfictfimandshadowcode
finparaflflefl.Ffinaflfly,theattackermonfitorstheshadowcodefor
mfis-predfictfions(penaflfizedbyextraCPUcycfles),tofigureout
whfichbranchwastakenbytheencflave.

C.ORAM

ORAM[9]fisaweflfl-knowncryptographfictechnfiquewhfich
provfidessecureaccesstoanencryptedmemoryregfionflocated
finaremoteanduntrustedserver.ORAMachfievessecure
memoryaccessby(a)accessfingmufltfipflememoryflocatfions
finsteadofasfingflememoryflocatfionand(b)re-shufflfingand
re-encryptfingtheextractedmemoryregfionswfitharandomseed.
PathORAM[22]fisanfimprovedvarfiantofORAMwhfichuses
abfinarytree-flfikeformatfiontostoretheencryptedmemory
ontheserver.EachnodewfithfinthetreefiscomposedofK
bflocks,whereKfisaconstantdefineddurfingfinfitfiaflfizatfion.An
ORAMtreecontafinsbothreaflbflocks,fi.e.,wfithactuaflcflfient
data,anddummybflocks,fi.e.,wfithdummydata,meanttofoofl
anattacker.ThenumberofreaflbflockswfithfinatreeofLfleafs
canbeatmostLfinordertoprovfidethesecurfityguarantees
ofORAM.Thetreefisstoredwfithfintheuntrustedstoragefin
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Ffig.1:PathORAMfiflflustratfion

UsfingPathORAM,thecflfientrunsanORAMcontroflfler
wfithfinasmaflfl,compfleteflytrustedmemoryregfion.Thereare
twokeydatastructuresforPathORAM,fi.e.,thePosfitfion
mapandtheStash.Theposfitfionmapcanbeasfimpflefinteger
array,whfichflfinksthereaflbflocktofitscorrespondfingfleaf-findex
wfithfintheORAMtree.Wheneverthecflfientneedstoaccess
abflockfromtheORAMtree,theORAMcontroflflerfindsthe
correspondfingfleaffromtheposfitfionmapandextractsthepath
fromtheroottothefleaf.Theextractedbflocksarestoredwfithfin
thestashmemory.

Ffigure1fiflflustratesthePathORAMaflgorfithm.Inthfisfigure,
thecflfientattemptstoaccessthebflockDfromtheuntrusted
storagecontafinfingtheORAMtree(1).Ffirst,thecflfientflooks-
upthefleaffindexcorrespondfingtobflockD,whfichfis11finour
exampfle(2).Then,thecflfientextractsthecompfletepathfrom
therootofthetreetothefleaf(fi.e.,d1,d3,D)andsavesfitfinthe
stashasshown.Thedummybflocks(fi.e.,d1,d3)aredfiscarded
atthfispofinttokeepthestashsfizesmaflfl.Afteraccessfingthe
bflockD,thecflfientrandomfizesfitsposfitfion,fi.e.,finfitfiaflfleafwas
11andfinaflfleaffis10,andre-encryptsthebflockwfitharandom
seed(3).Thecflfientthentrfiestowrfite-backtothetreefrom
theofldfleaf(11)backtotheroot.Toensureconsfistency,the
cflfientonflywrfitesbackareaflbflockonacertafinnode,fiff,that
nodefisthenewfleaf,fi.e.,10,orthatnodefisfinthepathtothe
newfleaf.Ifthecflfientdoesnothaveareaflbflocktoputfinto
thenode,fitgeneratesdummydata,encryptsfit(usfingrandom
nonce)andwrfitesfittothatnode.Forexampfle,finthefigure,
(d4,d5)correspondstothegenerateddummydata.

III. THREATMODEL

WeassumeascenarfiowhereauserrunsanSGXencflave
programwfithsomesecurfity-sensfitfiveprogram.Theencflave
program,OBFUSCURO’sruntfimeandcompfifler,andtheCPU
aretheonflytrustedcomponents,andaflflothersoftwareand
hardwarecomponents(fincfludfingoperatfingsystems,hypervfisors,
memoryhardwareunfits,etc.)areuntrusted.Theuser’sgoafl
fistoensurethattheprogram’sflogficfisnotfleakedtoany
attackerobservfingtheencflave’sexecutfion.Therefore,the
programexecutabflefissecureflyprovfidedtotheremoteSGX
encflavethroughanencryptedchannefl(e.g.,Dfiffie-Heflflman[23]
betweenencflaves). Weassumethattheencflavefisaflready
provfisfionedwfithaflflprerequfisfitememoryand/orfiflesthatfit
woufldrequfiretocorrectflyexecutebeforefitstartsexecutfing.
Therefore,wecansafeflyassumethattheencflavedoesnot
performasynchronousexfit(e.g.,forsystemcaflfl)afterthestart
offitsexecutfiontfiflfltermfinatfion.Theattacker’sgoaflfistoobtafin
theunderflyfingaflgorfithmorprogramflogfic.Toachfievethfis,
theattackercanprobe2theencflaveusfinganyfinputofhfis/her
choficeandgetthecorrectoutput.Furthermore,theattackercan
observetheprogram’saccesspatternsthroughacombfinatfionof

2Thfisassumptfioncanbeeasfiflyreflaxedtoensurefinput/outputconfidentfiaflfity
aswedescrfibefin§IX
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bus snooping attacks and software side-channel attacks using
page tables, caches, and branch prediction units. The attacker
can also measure the program’s execution time and use that to
leak some information.

As far as access patterns are concerned, we assume a
worst-case attack scenario: a powerful attacker who learns
perfect execution traces at their finest resolution (i.e., 64 B
from a combination of page table, cache and bus-snooping, and
exact branch targets from branch prediction attacks) of both
physical and virtual memory addresses that an enclave program
accesses. More formally, let Φ be an SGX enclave program,
and its runtime memory access trace Φk(I) (0 ≤ k ≤ n)
denotes a sequence of stripped code and/or data addresses
(i.e., stripped addresses depending on the attacking method’s
granularity) while running an input I . Φ0(I) denotes the first
address that the program accesses (i.e., an instruction at the
program’s entry point) and Φn(I) denotes the last address that
the program accesses (only if the program terminates on the
input I). Furthermore, the attacker can learn some information
about the program by monitoring timing channels. The attacker
can infer the entire execution time T of the program on his/her
provided inputs to leak some information. Given these memory
and timing traces, attacker tries to learn the security sensitive
information (e.g., the algorithm or some part of it) of the
program.

We do not consider software vulnerabilities in an en-
clave program (i.e., memory corruption vulnerabilities or
semantic/logical vulnerabilities) or physical attacks (power-
based, electromagnetic etc.) and security solutions [24, 25] to
these issues are orthogonal to OBFUSCURO. Furthermore, we
consider Spectre [26] and Meltdown [27] attacks out of scope as
well. Traditional program obfuscation assumes that the program
cannot directly disclose the memory contents of the application
which is what these attacks do. Also their patch [28] has already
been provided by Intel and can be rigorously checked through
the CPUSVN number provided during SGX remote attestation.

IV. CHALLENGES

As mentioned before, the goal of OBFUSCURO is to achieve
a strong notion of security — program obfuscation (also referred
to as virtual black box (VBB) obfuscation) on market-available
commodity trusted hardware, Intel SGX. Unlike supporting
program obfuscation on special-purpose hardware, such as
HOP [8], there are numerous challenges involved in supporting
the same on Intel SGX. These challenges can be attributed to
the unprivileged execution supported by SGX enclaves, which
either creates new side-channels or amplifies existing side-
channels. In particular, these challenges include — (a) how
to enforce secure ORAM-based program execution in SGX?
and (b) how to secure the ORAM controller in SGX? Unlike
special-purpose hardware, SGX enclaves cannot control the
page tables, caches and/or the branch-predictor, which can be
abused by an attacker to infer significant information from
naive ORAM-based execution. Also, while special-purpose
hardware supports a large trusted on-chip memory which holds
the ORAM controller as well as the target program’s code, SGX
enclaves only provide a very small trusted memory region (i.e.,
CPU registers) due to side-channels.

A. Comparison with Existing Schemes

In this subsection, we provide a comparison of OBFUSCURO
with all existing schemes tailored to provide oblivious and/or
obfuscated execution. For the ensuing discussion, it is imper-
ative that we make a clear distinction between side-channel
obliviousness (and its weaker version, memory trace oblivi-
ousness) and program obfuscation. In particular, side-channel
obliviousness assumes that the program is known to the attacker
but the input (securely provided to the program) is sensitive and
therefore has to be protected. Program obfuscation assumes that
the program is unknown and is itself sensitive whereas input
and output pairs can be known to the attacker. It is also worth
mentioning that program obfuscation can also be extended to
protect the input and output pairs to the program (through
employing encryption/decryption of input and output pairs) but
it is not its primary goal. Figure 2 provides a comparison of
all existing work with OBFUSCURO.

First, we compare the existing side-channel oblivious
systems with OBFUSCURO. In general, these systems are based
on custom hardware [29, 31], software-level [18, 32, 33] or
hybrid [30] defenses. The most notable example of a side-
channel oblivious system is Raccoon [18] which can protect
the input to a known program against all access pattern leakage
(page table, cache, bus-snooping and branch-prediction) on
commodity hardware. However, all of these schemes do not
fulfill the requirements of traditional program obfuscation and
are only concerned with protecting the input provided to the
program. On the other hand, program obfuscation protects the
identity of the program itself, and can also be used to protect
the input provided to the program.

The closest existing work is HOP [8], which is the only
system apart from OBFUSCURO, which guarantees virtual
black box obfuscation to a program. However, HOP is based
on special-purpose hardware and further utilizes an on-chip
trusted storage for storing and executing the code segments
of the program and the ORAM controller. Thanks to the
special-purpose hardware, HOP remains unconcerned with
protecting its ORAM controller and the program against sophis-
ticated cache and branch-prediction attacks. Conversely, since
OBFUSCURO supports obfuscated execution on commodity
hardware, its design revolves around the limitations of the
hardware and therefore has to deal with the cache and the
branch-predictor, to provide the same theoretical guarantees of
program obfuscation.

B. Achieving Obfuscation on Commodity Hardware

In this subsection, we attempt to elaborate on the design
choices taken by OBFUSCURO in order to achieve the goals
set out by program obfuscation. Just to reiterate, to support
program obfuscation, OBFUSCURO has to answer the following
questions — (a) how to execute a target program’s code without
leaking memory traces?; (b) how to provide secure access to
its data regions (e.g., stack, heap etc.) without leaking memory
traces?; and (c) how to ensure that the program leaks no timing
information?

The answer to (a) and (b) lies in the design of fixed
scratchpad regions for code execution and data access. In fact,
simply doing so is enough for specialized hardware (such
as the one used by HOP) but not for commodity hardware,
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Scheme Archfitecture ProtectfionScope Secure Program

BusSnoopfing CacheAttacks BranchPredfictfion Page-fleveflAttacks ORAM Obfuscatfion

Raccoon[18] commodfityhardware ✓ ✓ ✓ ✓ ✓ ✗

Phantom[29] specfiaflpurposehardware ✓ ✗ ✗ ✗ ✗ ✗

GhostRfider[30] specfiaflpurposehardware ✓ ✗ ✗ ✓ ✗ ✗

HOP[8] specfiaflpurposehardware ✓ ✗ ✗ ✓ ✗ ✓

OBFUSCURO(thfispaper) commodfityhardware ✓ ✓ ✓ ✓ ✓ ✓

Ffig.2:AnovervfiewofthedfifferencesfinOBFUSCUROandexfistfingobflfivfiousexecutfionschemes.

sfinceOBFUSCURO rfisksfleakfingfinformatfionwfithfinthese
regfionsthroughpagetabfle,cacheandbranch-predfictfionattacks.
OBFUSCUROensuresthatthescratchpadregfionsareasfingfle
cache-flfine(fi.e.,64B)finsfizetopreventpagetabfleandcache
attacks.Tofurthersecurethecodescratchpadagafinstbranch-
predfictfion,OBFUSCUROensuresthataflflbranchesto/fromthe
scratchpadareatfixedflocatfions.Aflthoughtheabovedesfign
nuflflfifiesmemory-basedsfide-channefls,fitrafisestwofimportant
questfions —(fi)howtosupportcodeexecutfionanddataaccess
atthegranuflarfityofcache-flfine?;and(fifi)howtosecureflyfetch
thesebflocksontothescratchpads?

Inordertosupportcache-flfine-granuflarcodeexecutfion,
OBFUSCURO breaksthetargetprogram’scodefinto64B
basficbflocks,normaflfizesbranchfinstructfionswfithfineachbflock
andfinstrumentseachcodeaccessfinstructfion.Furthermore,
OBFUSCUROaflsobreaksthedataregfionfintobflocksof64B
andfinstrumentseachdataaccesstoensurecorrectnessof
programexecutfion.Lastfly,finordertosecureflyfetchcodeand
databflocksontothescratchpadregfions,OBFUSCUROutfiflfizes
ORAMtohfideaccesspatternsfromaprfivfiflegedattacker.As
shownbyprevfiouswork[16,17],theORAMcontroflflerhas
tobefurtherprovfisfionedtoavofidfleakfingfinformatfionfinSGX
encflaves.OBFUSCUROsupportsboththetradfitfionaflscheme
forsecurfingORAMwhfiflstaflsoprovfidfinganaflternatfiveand
efficfientapproach.

Ffinaflfly,tocounterthethreatoftfimfingchanneflsandconse-
quentflyanswer(c),OBFUSCUROnormaflfizestheexecutfiontfime
ofthetargetprogramsbyextendfingtheprogram’sexecutfion
usfingdummy(butfindfistfingufishabfle)codebflocks.OBFUSCURO
automatficaflflyprovfisfionstheprogramwfiththesecodebflocks
suchthattheprogramrunsfindefinfitefly.OBFUSCUROdfirects
theencflavetostopexecutfingaftertheexecutfionofafixed
numberNofcodebflocks.Asweshowfin§VII-B,eachcode
bflockexecutfiontakessfimfiflartfime,resufltfingfinexecutfion-tfime-
normaflfizatfionfortheprogram.

V. DESIGN

A.Overvfiew

OBFUSCUROfisasoftwareframeworkenabflfingobfuscated
executfionforSGXencflaveprograms.Thekeyfideabehfind
OBFUSCUROfistoenabflecache-flfine-granuflarcodeexecutfion
anddataaccess,securedthroughtheuseofORAMoperatfions,
therebyexhfibfitfingmemorytracesobflfivfioustoprogramexe-
cutfion(fiflflustratedfinFfigure3).Thecoredesfignfeaturesof
OBFUSCUROcanbesummarfizedasfoflflows.

•Secure ORAM Scheme.OBFUSCURO

Code ORAM 
Controflfler

Data ORAM 
Controflfler

C-Pad

D-Pad

stash

pos. map

Regfister-based

Data-obflfivfious

Code access
Retrfieve
code bflock

Retrfieve
data bflock

C-Tree

D-TreeData access

Fetch data

Actuafl
data
access

Fetch code &
jump

1
2

3

1

2

3

4

64B

64B

Code executfion modefl (§V-D) Data access modefl (§V-E)

5
Fflush data

stash

pos. map

Regfister-based

Data-obflfivfious

§V-B

§V-C

§V-B

§V-C

ORAM Bank

Data access jmp

Code access jmp

fimpflementsfits
ORAMcontroflflerusfingdataobflfivfiousaflgorfithms,finor-

Ffig.3:OBFUSCURO’ssystem-fleveflovervfiew.

dertoprotectfitfromsfide-channeflattacks(§V-B).Aflso,
OBFUSCUROfimpflementsaregfister-basedstashwhfichfim-
provesontheexfistfingsfide-channeflresfiflfientORAMfimpfle-
mentatfions[16,17].
•RepurposfingNatfivePrograms.OBFUSCUROtransforms
natfiveprograms(§V-C)throughmemoryflayouttransfor-
matfionandvfirtuafladdresstransflatfionfinordertobrfidge
thesemantficgapbetweennatfiveprogramexecutfionand
ORAM-basedoperatfions.
•CodeExecutfionModefl.OBFUSCUROensuresthatthecode
executfion(ofatargetprogram)fisexcflusfiveflyperformed
wfithfinafixedflocatfion,C-Pad(§V-D).Aflflfinstructfionsare
floadedontothescratchpadusfingORAMoperatfionsand
executedfromthestarttotheendofthescratchpad(1∼
3).Furthermore,theC-PadfisdesfignedwfithSGX-aware
protectfionsunflfikeprevfiouswork[8,30].
•DataAccess Modefl.OBFUSCUROensuresthataflfldata
accessfisperformedatadatascratchpad,D-Pad,whfich
fisafixedmemoryflocatfionupdatedusfingORAMopera-
tfions(§V-E).Thetargetprogram’sreadandwrfiteoperatfions
areperformedatthesame memoryflocatfionregardfless
ofexecutfioncontext(1∼5).OBFUSCUROaflsoensures
thatthedataaccessfisaflwaysperformedonceperC-Pad,
normaflfizfingthenumberofdataaccessespatterns.
•Start-to-EndObfuscatfion.OBFUSCUROensuresthatthe
targetprogramcontfinuesexecutfingtfiflflacertafinpredefined
tfimeto mfitfigatetfimfing-basedchannefls,firrespectfiveof
theprogramflogfic(§V-F).OBFUSCUROachfievesthfisby
finstrumentfingthetargetappflficatfiontofintroducedummy
memorybflocks,afterthetermfinatfionofthefintendedflogfic.

Workflow. ThefinputtoOBFUSCUROfisthesourcecodeof
atargetencflaveappflficatfion.Usfingthefinput,OBFUSCURO
producesanfinstrumentedexecutabfle,fuflflyfloadedwfitha
runtfimeflfibrary(contafinfingtheORAMcontroflfler).Durfing
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finfitfiaflfizatfion,theruntfimeflfibrarypopuflatesthecodeanddata
bflocksfintodfifferentORAMtrees.Afterwards,theORAM
controflflerextractsthefirstcode-bflocktobeexecuted,floadsfit
ontothecodescratchpad,andensuresexecutfionstartsfromthe
begfinnfingofcodescratchpad.Whenthecodebflockperforms
abranchfinstructfion,thebranchfinstructfionfisrepflacedwfith
newjumpfinstructfiontotheORAMcontroflflerforcodes.Then,
theORAMcontroflflerfloadstherequfiredcodebflockontothe
codescratchpadusfingORAMoperatfions,andjumpsbackto
thebegfinnfingofthecodescratchpad(§V-D).Whfifleaccessfing
data(fi.e.,gflobafl/heap/stackobjects),theaccessfinstructfionfis
repflacedwfithnewjumptotheORAMcontroflflerfordata.
TheORAMcontroflflerfordataaflwaysfloadsthecorrespondfing
databflockontothedatascratchpadusfingORAMoperatfions,
andreturnstheapproprfiateaddress(fi.e.,baseaddressof
datascratchpad+accessoffset)(§V-E).Ffinaflfly,OBFUSCURO
ensuresthattheprogramkeepsexecutfingtfiflflacertafintfime
perfiodhaseflapsedbeforereturnfinganoutputtotheuserthereby
ensurfingcompfletestart-to-endobfuscatfion(§V-F).

B.SecureORAMScheme

Inthfissubsectfion,weexpflafinhowOBFUSCUROdesfignsa
secureORAMschemetoensureobflfivfiousprogramexecutfion.
Ffirstfly,OBFUSCUROpflacesboththeORAMcontroflflerand
treeswfithfinanSGXencflave.Secondfly,finresponsetosfide-
channeflthreatsagafinstSGXencflaves,OBFUSCUROsecures
workfingmechanfismsoffitsORAMcontroflfler,fi.e.,ensurfingthat
eachoperatfionfisbranch-free(tomfitfigatetherfiskofbranch-
predfictfion)anddata-findependent(tomfitfigatetherfiskofpage
tabfleandcacheattacks).Inthfisregard,OBFUSCUROconstructs
twostashdesfigns:CMOV-basedandregfister-basedstashforthe
ORAMcontroflfler(§V-B1).Furthermore,OBFUSCUROempfloys
adata-obflfivfiouspopuflatfionschemetosecureflypopuflatethe
ORAMtrees(§V-B2).

1)ORAMControflfler:Inthefoflflowfing,wedescrfibehow
OBFUSCUROsecuresthetwo mafindatastructuresofthe
ORAMcontroflfler,fi.e.,posfitfionmapandstash,agafinstaccess-
patternfleakage.Bysecurfingaccessontothesedatastructures,
OBFUSCUROaflsoensuresthatfitscodefisdevofidofcondfitfionafl
branches(fi.e.,secureagafinstbranch-predfictfionattacks).

ObflfivfiousPosfitfionMap. Theposfitfionmapcontafinssensfitfive
finformatfionregardfingORAMbflocks,fi.e.,mappfingfrombflock-
fidtothefleaffinORAMtree.Anattackercanfleaksensfitfive
finformatfionaboutprogramexecutfionbyobservfingtheaccess
patternsontotheposfitfionmap.OBFUSCUROempfloysdata
obflfivfiousaccessmechanfismtopreventfinformatfionfleakage
fromtheposfitfionmap.Thekeysecurfityprfimfitfiveofthfis
mechanfismfisfinfleveragfingcmovfinstructfionfinx86tostream
throughtheentfiredatastructures.SfimfiflartoRaccoon[18],
wedevfiseawrapperfunctfionforthecmovfinstructfiontoadd
addfitfionaflbogusmemoryaccess.Dependfingontheflagvaflue
provfidedtothewrapperfunctfionofthecmovfinstructfion,the
functfionperformsefithertheactuaflmemorywrfite(fiftheflag
fistrue)orabogusmemoryaccesswfithoutwrfitfing(fiftheflag
fisfaflse).

Next,wedescrfibehowOBFUSCUROsecuresaccessontothe
stash.Nafiveflyaccessfingthestashwoufldfleavememorytraces
thatcanbeusedtodfistfingufishbetweenreaflanddummybflocks
fintheextractedORAMtreepath.OBFUSCURO

ORAM 
Controflfler

C-pad or
D-pad

DRAM

Genufine access Bogus access
Stash bflock Target bflock

Reguflar arraya) cmov-based
stash

b) Regfister 
onfly stash

CPU
AVX regfisters

canutfiflfizetwo

Ffig.4:Regfister-basedstashversusCMOV-basedstash.CMOV-basedstash
hastoaccessanentfirearraypflacedfinDRAMwhereasregfister-based
stashcandfirectflyretrfieveanfitemfromCPU’sAVXregfisters.

vofidretrfieve_from_stash_cmov(vofid*cpad,fintrequfired_bflk){
booflfflag=faflse;

for(fintfi=0;fi<NUM_STASH_BLOCKS;fi++){
//Checkthevaflfidfityofthecondfitfion,fi.e.,
//fisthfisthebflocktoretrfievefromthestash
fflag=((stash[fi].bflocknum==requfired_bflk));

//Basedonthefflag,efitherperformareafloradummycopy
x86_cmov(cpad,stash[fi].membflk,fflag);

}
}

(a)CMOV-basedstash

;%rsfipofintstothebaseaddressofORAMtreebflock.
movaps(%rsfi),%xmm0
vfinsertfi128$0x0,%xmm0,%ymm5,%ymm5
add$16,%rsfi
movaps(%rsfi),%xmm0
vfinsertfi128$0x1,%xmm0,%ymm5,%ymm5
add$16,%rsfi
movaps(%rsfi),%xmm0
vfinsertfi128$0x0,%xmm0,%ymm6,%ymm6
add$16,%rsfi
movaps(%rsfi),%xmm0
vfinsertfi128$0x1,%xmm0,%ymm6,%ymm6

(b)Regfister-basedstash

Ffig.5:ImpflementatfionsnfippetsofOBFUSCURO’sstashaccess:
(a)OBFUSCUROobflfivfiousflyretrfievesabflockfromthestashusfing
CMOV;and(b)OBFUSCUROfleveragesYMMregfisterstoobflfivfiousfly
accessstashfindfices.Ascanbeobserved,therearenocondfitfionafl
branchesand/ordata-dependentaccessfinbothcases.

dfifferentstashdesfigns,CMOV-basedstashandanoveflregfister-
basedstash.Whfiflebothcompfleteflysecurestashaccesses,fit
fimposesdfifferentperformancecharacterfistficsdependfingonthe
underflyfinghardwarearchfitecture.

CMOV-basedStash. OBFUSCUROcanusedata-obflfivfiousac-
cess(usfingCMOV)tostreamthroughthecompfletestashmemory
regfion(Ffigure4-a),sfimfiflartoprevfiousschemes[16,17].As
aresuflt,theCMOV-supportedaccessguaranteesthattheattacker
flearnsnothfingfromthefleakedaccesspatternsastheattacker
observesaccessesontoaflflstashfindfices.Onecaveatofthfis
approachfisthatthestashfisaflargememoryregfion,fi.e.,>=
Bflog2Nbytes;whereBfisthebflock-sfizefinbytesandflog2N
fisthesfizeoftheORAMtreecontafinfingNnodes.Therefore,
usfingCMOVwfithfinthestashcanresufltfinperformanceoverhead
asnotedbyprevfiousworksandreportedfin§VIII-1.Ffigure5a
showsacodesnfippetfiflflustratfinghowtheCMOV-basedstash
functfions.

Regfister-basedStash. OBFUSCUROaflsodesfignsanovefl
regfister-basedstash,whfichfleveragesAdvancedVectorEx-
tensfions(AVX)finstructfionsetaflongwfiththeXMMand
YMMregfisters. Wecoflflectfiveflyrefertotheseregfistersas
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AVX registers. The key idea is to reserve these registers for
ORAM stash only and restrict the program and associated
libraries from using them. An operation performed on any
CPU register does not imprint traces on memory-related units
(cache, TLB/MMU, DRAM etc.) and is therefore oblivious
to even privileged attackers such as the OS (Figure 4-b).
Therefore, OBFUSCURO copies each tree block onto a set of
AVX registers and performs all required operations on these
registers. This limits the involvement of CMOV and therefore
provides a performance improvement of 30−40% as compared
to the CMOV-based stash as shown in §VIII-1. Figure 5b shows
an example of where the memory located at rsi is moved in
chunks of 32-bytes into ymm5 and ymm6.

However, there are two things to consider while opting for
the register-based stash over the CMOV-based stash. Firstly, the
register-based stash limits the involvement of AVX registers for
other important operations such as AES-NI instruction set and if
the enclave program requires these operations, it would be better
suited to use the CMOV-based stash. Secondly, current desktop
hardware only supports AVX2 [34] which provides 16 YMM
registers of 32 B memory each, totaling to 512 B of memory
for the stash. This size is enough for small ORAM tree size
(e.g., 4-8KB) but is insufficient for larger tree sizes. However,
the AVX-512 [35] instruction set architecture introduces larger
AVX registers (ZMM registers), currently present on high-end
hardware [36, 37]. The ZMM registers are 32 registers in total,
with each being 512-bit wide and can support a total stash
size of 2-kilobytes which increases our tree size that can be
supported from 8KB to 256MB.

Workflow. Based on the above building blocks, we now illus-
trate how OBFUSCURO performs a secure ORAM access. First,
OBFUSCURO uses CMOV to scan through the whole position
map to find the required ORAM block. Then, OBFUSCURO
sequentially copies the tree blocks to either memory (if CMOV-
based stash is used) or the registers (if the register-based stash is
used). Afterwards, OBFUSCURO performs an oblivious retrieval
of the required block from the stash. In the case of CMOV-based
stash, it performs a sequential CMOV access on each individual
stash index and in the case of register-based stash, it performs an
inline assembly move operation to move it from the register to
the memory. After performing the relevant tasks on the ORAM
block, we rewrite the block back using similar approach as
mentioned above.

2) ORAM Bank: OBFUSCURO places the ORAM bank,
comprising of the ORAM trees, within the enclave memory.
OBFUSCURO performs secure ORAM tree population to miti-
gate side-channel leakage.

Allocation. The ORAM trees are allocated as global arrays
within the enclave program’s memory space (i.e., within the
EPC). OBFUSCURO can avoid encrypting ORAM trees, which
is an important step in the ORAM protocol, because the Memory
Encryption Engine (MEE) in SGX [38] implicitly performs the
encryption. There are two things to note here: (a) the allocation
step does not leak any important information to the attacker
apart from the location of the ORAM tree (which is public
information in the ORAM attack model) and (b) the size of
the code and data trees should be carefully considered prior to
allocation since as per Path ORAM’s design, the size of the
trees cannot be dynamically adjusted.

Population. As per Path ORAM’s requirement, the population
of each block into the ORAM tree should be performed as
a regular ORAM access. To further illustrate, the population
of code and data blocks in C-Tree and D-Tree respectively,
is carried out as follows: (a) OBFUSCURO picks a block
which is to be added to the ORAM tree. (b) OBFUSCURO
determines a random position to store the block within the
ORAM tree. The random position is determined using the
RDRAND hardware instruction, which only involves the trusted
CPU. (c) OBFUSCURO performs an ORAM access onto the
path that corresponds to the selected position. At first glance,
this might leak some information to the attacker. However,
since this is an ORAM access, the final destination of the block
will be randomized within the path once more which ensures
strong secrecy. (d) OBFUSCURO repeats the above steps until
all real blocks are populated to the ORAM tree.

C. Repurposing Native Programs

In order to bridge the semantic gap between native and
oblivious execution, OBFUSCURO transforms the target pro-
gram’s memory layout into an ORAM-compatible memory
layout, provides virtual address translation to support dynamic
memory relocation, and introduces scratchpad regions for code
execution and data access.

Memory Layout Transformation. OBFUSCURO separates
the target program into two sections, i.e., code and data, and
allocates a dedicated ORAM tree for each section, namely
C-Tree for code and D-Tree for data. OBFUSCURO can estimate
the size of the C-Tree since the program’s code size remains
static. Since the size of dynamically allocated data (e.g., heap
and stack) cannot be precisely estimated, OBFUSCURO sets
a maximum limit on the size of the D-Tree. This is not
a limitation since SGX programs themselves are initialized
with a user-provided stack and heap size. Code blocks are
prepared during the compilation phase, where the code is
divided into blocks of the same size and filled with instrumented
instructions by OBFUSCURO (more details in §V-D). During
program initialization, OBFUSCURO populates both the code
blocks and data blocks into the C-Tree and D-Tree respectively.
The initialized data objects (i.e., global variables) are filled in
their corresponding blocks whereas the blocks corresponding
to uninitialized data blocks are zero-initialized.

Virtual Address Translation. All memory accesses in a
traditional program are realized through virtual addresses,
while ORAM operations deal in blocks of the ORAM tree.
To reconcile this, OBFUSCURO performs on-the-fly translation
of virtual addresses into ORAM block indices. OBFUSCURO
linearly maps the virtual address space of a program into ORAM
blocks and performs bitwise right-shift to secure translation.

Heap Management. Since SGX enclaves do not have support
for dynamic memory allocation, the maximum heap size
required for the application has to be decided at compilation
time. To handle runtime requests, OBFUSCURO provides a
wrapper for the malloc and free function calls, i.e., malloc_ob
and free_ob, which are responsible for managing the heap
memory (alongside the metadata) requested by the enclave
program. In particular, malloc_ob obliviously picks a block
from the D-Tree which is already provisioned with blocks to
handle heap memory requests during program initialization. The
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wrapper function returns the virtual address corresponding to
the selected block. Later, when free_ob is called, it deallocates
the heap memory region, figures out which blocks from the
D-Tree are now free and simply tags them as such.

Scratchpad. In traditional ORAM, the program can simply
access the extracted block from the stash. However, doing so
within the SGX environment will leak a considerable amount of
information. To deal with this problem, OBFUSCURO prepares
two fixed locations (determined during program initialization)
of fixed size (one cache line, i.e., 64 B) to access code and data
blocks, called C-Pad and D-Pad respectively. These memory
regions are provisioned with SGX-specific defenses (refer
to §V-D and §V-E). After OBFUSCURO performs oblivious
operation and locates a target block in stash, OBFUSCURO
copies the target block in stash to scratchpad. Note that this
copy from stash is oblivious as described in §V-B1. Therefore,
by normalizing access location and size through scratchpads,
OBFUSCURO can successfully hide actual memory location and
the attacker can not infer that information. We provide more
details as to how this is accomplished in the next two sections.

D. Code Execution Model

OBFUSCURO ensures the following three security properties
in its code execution model: C1) Code execution is always
performed within the C-Pad3; C2) Code access instructions (i.e.,
branch instructions which impact the control-flow of a program,
including call, return, unconditional branch, and conditional
branch instructions) are only executed at a fixed location (i.e.,
the end of the C-Pad); C3) All code access instructions are
replaced with an instruction jumping to a runtime function (i.e.,
code_oram_controller), which performs an ORAM operation
to fetch the code block required.

The above mentioned security properties of OBFUSCURO
protect code execution from access-based side-channel attacks.
Since the size of the C-Pad is the same as the minimum
granularity of page table and cache-based attacks (i.e., 64 B), C1
prevents these attacks from gaining any meaningful information.
C2 and C3 prevent a branch prediction attack, because all the
control-flow changes are made from the same location (i.e., the
end of C-Pad as specified by C2) to the same destination (i.e.,
code_oram_controller as specified by C3), irrespective of the
semantics of the original branch instruction.

To meet the property C1, OBFUSCURO restricts all basic
blocks to be at the size of C-Pad (i.e., 64 B) during the
compilation phase. Specifically, OBFUSCURO breaks up larger
basic blocks into smaller ones equaling the size of the C-Pad.
If the size of the basic block is smaller than the C-Pad,
OBFUSCURO inserts nop instructions to fill the space. To
meet the properties C2 and C3, OBFUSCURO replaces all
branch instructions with a sequence of equivalent instructions
invoking code_oram_controller. This invocation is always
performed using jmp instruction to code_oram_controller,
which is aligned at the end of the basic block.

For example, Figure 6a shows how OBFUSCURO replaces
a unconditional branch instruction. Given the original jmp

3The C-Pad is a writable and executable region but it can be secured against
memory corruption by employing SFI similar to SGX-Shield [24] and/or
dynamic page protection to be available in SGXv2.

; Before
jmp jump_target

; After
mov R15, jump_target ; Pass jump_target through R15
jmp code_oram_controller ; code_oram_controller loads the code

; block to C-Pad and then jumps to the
; beginning of C-Pad.

(a) Unconditional branch (code access)

; Before
mov 4(RAX), RBX ; Store RBX at where (RAX + 4) points to

; After
lea R15, 4(RAX) ; Pass the store address through R15
mov R14, after_fetch ; Pass the return address through R14
jmp data_oram_controller ; data_oram_controller fetches data block

; and returns address of (D-Pad + offset)
; through R15

after_fetch:
mov (R15), RBX ; Write a value RBX to (D-Pad + offset)

(b) Store (data access)

Fig. 6: Instrumentation on code and data access.

instruction, OBFUSCURO first instruments an instruction storing
the virtual address of the jump target in R15. Then, OBFUSCURO
inserts a jmp instruction to the code_oram_controller. The
code ORAM controller computes the ORAM block index using
the virtual address stored in R15 (as mentioned in §V-C), and
retrieves the required code block from the C-Tree through
an ORAM access. Afterwards, OBFUSCURO overwrites C-Pad
using the obtained code block and resumes execution from the
beginning of C-Pad. In this manner, OBFUSCURO translates all
types of control flow instructions, including conditional jump,
function call, return.

E. Data Access Model

OBFUSCURO ensures the following security properties in
the data access model: D1) Data access is always performed
within the D-Pad of size 64 B; D2) Data access instructions
are only executed once per C-Pad at a fixed location (i.e., the
beginning of the C-Pad); and D3) All data access instructions
are replaced with an instruction jumping to a runtime function,
data_oram_controller, which performs an ORAM operation
to load the corresponding data block onto the D-Pad. Similar
to the code execution model (§V-D), these properties prevent
cache and page table attacks. This is because attackers will
always observe the same data access patterns onto D-Pad.

One thing to note here is that D2 enforces each code block
to perform a single jump to the data_oram_controller. This
restriction is partly due to the constraint of the 64-byte code
block. In particular, OBFUSCURO’s data access instructions
take 28-bytes and the code access instructions (mentioned in
§V-D) take 20-bytes. Since a code block requires at least one
code access instruction, i.e., to access the next code block, it
leaves room for only a single data access. However, as a result
of this, OBFUSCURO ensures that there is a normalized number
of data access per code block, which cannot be exploited by an
attacker. OBFUSCURO also prevents branch-prediction attacks
by placing the data access instruction at a fixed location. If a
certain code block does not require a data access, OBFUSCURO
performs a dummy data access in order to portray the same
memory footprints for each block.

Unlike the code execution model, the data access model
allows offset-based access within the D-Pad such that a memory
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target_mafin()
{
[orfigfinafl_functfion_body]
*V = ret_vafl
contfinuous_dummy()
}

entry()
{
RT_return_addr= R
target_mafin()

R:
ret_vafl= data_oram_controflfler(V)

}

code_oram_controflfler(code_bflock_fid)
{
*C-Pad = obtafin_oram_bflock(code_bflock_fid)
fflag = ( num_executed_bflocks< flfimfit )  
num_executed_bflocks++
CMOV(fflag, C-Pad, RT_return_addr)
jmpC-Pad

}

Instrumented Target Appflficatfion

ObfuscuroRuntfime Lfibrary

1

2

3

4

5

6

Orfigfinafl Target Appflficatfion

target_mafin()
{
[orfigfinafl_functfion_body]
returnret_vafl

}

entry()
{

ret_vafl= target_mafin()

}

contfinuous_dummy()
{
whfifle(true)
{
}
}

Obfuscated refigfion Return vaflueReturn

Ffig.7:OBFUSCURO’scontfinuousexecutfion.

accesscanbedfirectflyperformedatanyflocatfionwfithfinD-Pad.
Thfisoffset-basedaccessfissecureagafinstmemory-basedsfide-
channeflattackssfincetheD-Padfisthesfizeofthemfinfimum
granuflarfityofattackresoflutfion,fi.e.,64B.Inordertoreflect
changesmadebytheencflavecodeontheD-Padbacktothe
ORAMtree,OBFUSCUROflushestheextracteddatabflockafter
performfingrequfiredmemoryaccess.

Forexampfle,Ffigure6bfiflflustrateshowOBFUSCUROfin-
strumentsthestorefinstructfion.Sfimfiflartothecodeexecu-
tfionmodefl,OBFUSCUROusesthereservedR15regfisterto
passthevfirtuafladdress(fi.e.,the memoryoperandofa
storefinstructfion)tothedata_oram_controflfler.Thenthe
data_oram_controflflertransflatesthevfirtuafladdressfintothe
correspondfingORAMbflockfindex,andupdatesD-Padafter
extractfingthedatabflockusfinganORAMaccess.Afterwards,
thedata_oram_controflflerreturnsthevfirtuafladdressthrough
R15,whfichpofintswfithfinD-Pad(fi.e.,p1+p2,wherep1fisthe
baseaddressofD-Padandp2fistheoffsetwfithfintheD-Pad).
Therefore,theencflaveprogramcorrectflyperformsthestore
finstructfionusfingR15,andthedatabflockfisflaterflushedback
fintotheD-Tree.

F.Start-to-EndObfuscatfion

Intheprevfioussubsectfions,weexpflafinhowOBFUSCURO
ensuresthatthetargetprogram’scodebflocksperforma
normaflfizedsequenceofoperatfions,firrespectfiveofthefirorfigfinafl
flogfic.However,thatfisnotenoughforcompfleteobfuscatfion.
Inpartficuflar,therefisonefurtherdfistfingufishfingfactorfinthe
program,fi.e.,executfiontfimeoftheprogram.Forexampfle,
runnfingdfifferentprogramsorjustrunnfingthesameprograms
wfithdfifferentfinputscanresufltfindrastficaflflydfifferentexecutfion
tfimes,whfichcanbeabusedbyanattacker.

OBFUSCUROhandflesbothofthesecasestoensurethat,
firrespectfiveofprogramflogfic,theobfuscatedexecutfionaflways
termfinatesafterafixedamountoftfime.Inordertofixthe
executfiontfime,OBFUSCUROfinsertsdummycodebflockswfithfin
anatfiveprogram’scodeensurfingthattheprogramkeeps

executfingevenaftercompfletfingthefintendedprogramflogfic.
OBFUSCUROfinstrumentsthetargetappflficatfionasshownfin
Ffigure7.Asshownfinthefigure,OBFUSCURO finjectsa
dummyfunctfioncaflfledcontfinuous_dummyfintotheprogram.
Thedummyfunctfionfis meanttoexecuteawhfiflefloop
findefinfitefly,ensurfingthatprogramwfiflflnottermfinateoffits
ownwfiflfl.Asmentfionedfin§V-D,eachcodeaccesswfiflflgo
throughthecode_oram_controflfler.Therefore,OBFUSCURO
canstoptheprogramexecutfionafteracertafinpredefined
numberofcodebflocks,evenfifthedummyfunctfionnever
stopsexecutfing.However,todosoandprovfidetherequfired
outputback,OBFUSCUROneedsanaddresstojumptoafter
reachfingtheflfimfitoncodebflocks.

Now,weexpflafintheworkflowofthefinstrumentedtarget
program.Theappflficatfioncodefisdefinedastarget_mafin
whereastheencflaveofficfiaflflystartsexecutfionfromtheentry
functfion(1).Atthestartoftheentry,OBFUSCUROensures
thatthereturnaddressRfispassedtotheruntfimeflfibraryby
wrfitfingRT_return_addr(2).Afterwards,OBFUSCUROstarts
runnfingthetarget_mafinfunctfionandwrfitesfitsoutputtoa
gflobaflmemorywfithfintheprogram(3).Itfisworthnotfingthat
thfiswrfitewfiflflaflsobeachfievedthroughanORAMaccess(as
peraflfldataaccessmentfionedfin§V-E)andfisthereforeobflfivfious
totheattacker.Then,OBFUSCUROfinvokescontfinuous_dummy
(4),ensurfingthattheprogramcontfinuesexecutfing.

Asthe program executes,fit wfiflfljumptothe
code_oram_controflfleroneachcodeaccess.Atthfistfime,
OBFUSCUROchecksthatthepredefinedflfimfitonthenumber
ofcodebflockshasbeenreachedornot.Iftheflfimfithas
beenreached,theprogramjumpsbacktoRT_return_addr
finsteadofjumpfingtotheC-Pad(5).Atthfispofint,we
compfletedtheexecutfionoforfigfinaflprogramflogficbuthavenot
obtafinedtheoutput.Togettheoutput,OBFUSCUROcaflflsthe
data_oram_controflflertoextracttheoutputfromtheD-Tree
(6).Throughtheabovementfionedsteps,OBFUSCUROensures
thattherefisastart-to-endobfuscatfionofthetargetprogram,
whfichaflwaysexecutesthesamenumberofcodebflocksand
thustermfinatesafterafixedamountoftfime.

VI. IMPLEMENTATION

Wehavefimpflementedaprototypeof OBFUSCURObased
ontheLLVMCompfiflerproject4.0asweflflasInteflSGX
SDK’sencflavefloader.OBFUSCUROmodfifiedfoflflowfingtwo
componentsfinLLVM:a)LLVMbackendtoemfit64Bofcode
bflocksasweflflastofinstrumentcodeanddataaccessfinstructfion;
andb)CompfiflerruntfimeflfibraryforORAMcontroflflers.Inthe
LLVMbackend,especfiaflflytheassembflyemfitter,wearranged
anewcodeemfittertomeasurethesfizeoffinstructfionsfin
paraflfleflwfithdefaufltemfitter.Weaflsoutfiflfizedbufiflt-finmachfine
codebufifldertoredfirectthecodesanddataaccessestothe
runtfimeORAMcontroflflers.Thecompfiflerruntfimeflfibrary
fincfludesthefimpflementatfionofdata-obflfivfiousORAM,and
finterfacesforLLVMbackendandappflficatfionstoempfloyfit.The
obflfivfiousstashaccessfisfimpflementedwfithvfinsertfi128,and
vextractfi128AVXregfistermanfipuflatfingfinstructfionsfinthe
assembflyflanguageflevefl.Theobflfivfiousposfitfionmapaccessfis
basedontheCMOVfinstructfion,andwegeneraflfizedfitsoperatfion
tovarfiabfleflengths.Weaflsochangedtheencflavefloaderofthe
InteflSGXSDKtomakeC-PadusfingSGX’sEADDfinstructfion.
Intotafl,OBFUSCUROfintroduces3,117LoCfinLLVMbackend,
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2,179LoCfincompfiflerruntfimeflfibrary,and25LoCfinIntefl
SGXSDK.

VII. SECURITYANALYSIS

ThfissubsectfionprovfidesasecurfityanaflysfisofOBFUSCURO.
Ingenerafl,therearetwowaysanattackercansteaflfinformatfion
fromSGXencflavesusfingsfide-channefls.Ffirstfly,anattacker
canabuseobservedaccess-patternstofinfersomefinformatfion
abouttheprogramand/orfitsfinput.Secondfly,anattackercan
performtfimfing-basedattackstofleaksomefinformatfion. We
provfideasystematficsecurfityanaflysfisofOBFUSCUROagafinst
bothoftheseattackavenues.

A.AccessPatternAttacks

As OBFUSCURO fiscomposedof mufltfipflecomponents
toreaflfizeobfuscatedprogramexecutfion,westartbyshow-
fingthesecurfitypropertfiesofthefindfivfiduaflcomponentsof
OBFUSCURO.Thenweshowhowthesecomponentsfinteract
wfitheachotherandshowthatthesefinteractfionsarecompfletefly
obflfivfiousas weflfl.Ffinaflfly, wepresenttheresufltsofan
empfirficaflstudyshowfingthatOBFUSCUROachfievesaccess
patternobflfivfiousness.

ObflfivfiousnessofIndfivfiduafl Components. OBFUSCURO
fintroducesnewercomponentstoflegacyprogramsfinorder
toachfieveobfuscatedexecutfion,asshownfinFfigure8.Inthe
figure,weshowthefourcomponentsofOBFUSCURO(flabefled
as1∼4).Wecommentoneachcomponentfindfivfiduaflflyfin
thefoflflowfing.

1CodeORAMcontroflfler:ThecodeORAMcontroflflertakes
thevfirtuafladdressofnextrequfiredcodebflockasfinput,andfit
pflacesthecorrespondfingcodebflockontheC-Pad.Anattacker
cannotdecfipherthevfirtuafladdressbecauseOBFUSCURO
performssecurecomputatfionbasedonthfisaddress.Inpartficuflar,
theaddressfisfirsttransflatedtoaspecfificORAMbflock
usfingdataobflfivfiousrfight-shfiftoperatfion(§V-C),whfichreturns
thecorrespondfingbflocknumberfintheORAMtree.Then,
OBFUSCUROfindsthecorrespondfingfleafforthfisbflockthrough
sequentfiaflCMOV-basedscannfingoftheposfitfionmap.

Forthestash,OBFUSCUROusestwovarfiants,aCMOV-based
andaregfister-based.TheCMOV-basedstashperformsCMOV-based
memoryaccesssfimfiflartohowOBFUSCUROshfiefldstheposfitfion
map.Thfisfincfludesboth(a)whfiflecopyfingtherequfiredbflock
fromthestashtotheC-PadorD-Padand(b)whfiflewrfitfing
backthebflocksfromtheC-PadorD-Padtothestash.For
theregfister-basedstash,theAVXregfistersareretrofittedas
stashspace.SfinceaflfloperatfionsontheAVXregfistersare
obflfivfioustotheunderflyfingsystem,wecanperformadfirect
memoryaccessto/fromaspecfificregfisterwhfifleensurfingthat
nofinformatfionfisfleaked.PfleaserefertoFfigure9fordetafifled
operatfionsperformedbythecodecontroflfler.

2C-Pad:OBFUSCUROensuresthattheC-Padhasafixed
flocatfion(determfinedattheprogramfloadfing)andafixedsfize
(fi.e.,64B),andensuresthataflflobflfivfiouscodeexecutfionoccurs
fromthfisflocatfion.Sfince64Bfisthecache-flfinesfize(fi.e.,the
finestvfisfibflegranuflarfitythroughaccesspattern-basedsfide-
channeflattacks),theattackerflearnsnousefuflfinformatfionto
finfersemantficsdurfingtheC-Padexecutfion.Inotherwords,as
OBFUSCUROrunsthetargetprogram,theattackerwfiflflkeep
observfingthesamememoryactfivfityoverC-Pad,whfichfis
compfleteflyfindependentofthecodebflockbefingexecuted.

3DataORAMcontroflfler:ThedataORAMcontroflflertakes
thevfirtuafladdressofdataobjectsasfinput,andpflacesthe
correspondfingdatabflocktoD-Pad.Thedatacontroflflerfoflflows
theexactsameworkflowofthecodecontroflflerexceptthatfit
operatesontheD-TreefinsteadoftheC-Tree.Asprevfiousfly
shownforthecodecontroflfler,thedatacontroflfleraflsodoesnot
fleakanysensfitfivefinformatfion.

4D-Pad:TheD-Padfisfunctfionaflflyandstructuraflflysfimfiflar
totheC-Pad,exceptthatdataaccessfisperformedonfitandnot
codeexecutfion.SfimfiflartotheC-Pad,fithasafixedflocatfion
andthesamesfize,therebyshowfingthesamememoryactfivfity
foreachdataaccess.

ObflfivfiousInteractfionsb/wComponents.Theaforementfioned
componentsperformfivefinteractfionsbetweenthem(flabefled
asa∼e).Wefiflflustratebeflowhoweachofthesefinteractfions
fissecureagafinstaccesspattern-basedattacks.

aJumpfromCodeORAMcontroflflertoC-Padafterfetchfing
codebflock:Afterobflfivfiousflyextractfingabflockfromthe
C-TreeandcopyfingfittoC-Pad,thecodecontroflflerperforms
asfingflejumptothestartoftheC-Pad.Thfissteponflyreveafls
thatsomecodebflockofatargetprogramwfiflflnowbeexecuted,
whfichentafiflsnosemantficsbehfindthecodebflockbefing
executed.

bJumpfromC-PadtoDataORAMcontroflflerforfetchfing
databflock:Eachcodebflock(executfingwfithfintheC-Pad)fis
strfictflyenforcedtoperformasfingflejumptothedatacontroflfler,
becauseOBFUSCUROnormaflfizesthenumberofdataaccess
wfithfineachcodebflocktobeexactflyone(refer§V-E).Moreover,
thfisjumpfisperformedatafixedoffsetwfithfinC-Padtomfitfigate
therfiskofbranchpredfictfionattacks.Thetargetaddressofthfis
jumpfisaflsofixed,fi.e.,thestartofthedatacontroflfler’sflogfic.

cReturnfromDataORAMcontroflflertoC-Pad:Therefis
onflyasfingflejumpfromthedatacontroflflertotheC-Padat
afixedoffsetwfithfintheC-Pad,afterfetchfing/updatfingthe
requfireddatabflockontheD-Pad.

dSfingfleD-Padaccess:Therefisonflyasfingfleaccesstothe
D-Padpercodebflock.SfincethesfizeoftheD-Padfis64B,thfis
accessdoesnotreveafloffsetfinformatfionefither.

eJumpfromC-PadtoCode ORAMcontroflfler:Ffinaflfly,
OBFUSCUROenforcesthattherefisonflyonejumpfromC-Pad
tothecodecontroflfleratafixedaddressflocatedtowardsthe
endoftheC-Pad.Thetargetaddressofthfisjumpfisaflsofixed
atthestartofthecodecontroflflerflogfic.

EmpfirficaflStudy. Lastfly,wepresenttheresufltsofour
empfirficaflstudyonobfuscatedmemorytracesexhfibfitedby
varfiousappflficatfions.TheresufltsaredepfictedfinFfigure10.
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Ffig.10:Confusfionmatrfixfornatfiveaccesspatternsvs.obfuscated
patternsshownbyOBFUSCURO.

Wechoosesfixtargetappflficatfionsforthestudy,fincfludfing
anagram,pfi,mattranspose,sum,ffibonaccfi,andpaflfindrome.
Theseappflficatfionswerechosenduetothedfiversfityofthefir
computatfionaflcompflexfity.

InFfigure10,weattempttoshowthattherefisnocorreflatfion
betweennatfiveandobfuscatedmemorytracesofthesame
program.Wemeasuremufltfipflerunsforeachaforementfioned
appflficatfion,andforeachrunweaccumuflatedatacorrespondfing
atfimfingsequencetotheaddressaccessedbytheprogram.
Usfingtheaccumuflateddata,wecaflcuflatethePearsoncor-
reflatfionvafluebetweenthetestappflficatfionsandpopuflate
thecorrespondfingceflflfintheconfusfionmatrfix.Forexampfle,
consfiderthe(anagram,anagram)ceflflfinFfigure10-(a),the
Pearsoncorreflatfionvafluefisverycfloseto1becausethfisceflfl
fiscomparfingthememorytracesbetweentworunsofthe
sameprogram.Ontheotherhand,thecorreflatfionvafluefinthe
(anagram,pfi)ceflflfisnearfly0becausethefiraccesspatterns
arequfiteunfiquetoeachother.

Ffigure10-(b)showstheconfusfionmatrfixformedwhfifle
comparfingobfuscatedprograms(usfingOBFUSCURO)tothefir
natfiveaccesspatterns.SfinceOBFUSCUROensuresthataflfl
appflficatfionsproceedfinafixedpatternofexecutfion,theaccess
patternsoftheseprogramsarecompfleteflydfifferentfromthefir
counterpartsfinnatfiveexecutfion.Furthermore,aflflceflflsfin
Ffigure10-(b)areaflmost0becausenoneofobfuscatedprograms
haveanycorreflatfionwfithanyofthenatfiveprograms.

B.Tfimfing-basedAttacks

ADD SUB IMULIDIV pfi sum ffibonaccfianagramNOP

# of ORAM tree fleaves = 128

19.5K

18.5K

17.5K

20.5K

800M

760M

840M

880M

Apartfromaccesspatternattacks,aprfivfiflegedattacker
canaflsobreakprogramobfuscatfionwfithfinInteflSGXby

Ffig.11:(a)Dfistrfibutfionsofcodeexecutfioncycflesofdfifferenttypes
ofcodebflocks(y-axfis)wfith10%∼90%percentfiflefintervafls.(b)
Dfistrfibutfionsoftotaflexecutfioncycflesofvarfioustestprograms(y-axfis)
wfith10%∼90%percentfiflefintervafls.

abusfingtfimfingchannefls.Inpartficuflar,weexpectfoflflowfing
twowaysfinwhfichanattackercanabusetfimfingchanneflsto
fleakfinformatfionfromOBFUSCURO—(a)observfingthetfime
fittakesforfindfivfiduaflcodebflocks(finC-Pad)toexecute,and
(b)observfingthetotafltfimefittakesforanobfuscatedprogram
toexecute.Wefindfivfiduaflflyshowthefinfeasfibfiflfityofeachof
thesetfimfingchannefls.

C-PadExecutfionTfime. Tfimfingdfifferencesfinexecutfing
eachcodebflock(fi.e.,C-Pad)canfleakfinformatfionaboutthe
executfionsemantficoftheprogram.Westatfistficaflflyprovethat
thfissfidechanneflfisfinfeasfibflewfithfinOBFUSCURO’sexecutfion.
ThereasonforthfisfisthattheexecutfiontfimeforthedataORAM
access(whfichfisperformedexactflyonceperC-Pad)domfinates
theentfireexecutfiontfimeoftheC-Pad,andthetfimetakento
performtheORAMaccessfisfindependenttowhfichdatabflock
fitaccesses.Weconductedastatfistficaflexperfimentmeasurfing
CPUcycflesfinexecutfingdfifferentcflassesofcodebflocks.We
constructedfivedfifferentcodebflocks,fincfludfingNOP,ADD,SUB,
IMUL,IDIVcodebflocks.Eachcodebflockfinfitfiaflflyjumpstothe
datacontroflflertofetchadatabflockandtheremafinfingspace
fisfiflfledusfingoneofthefinstructfiontype.Furthermore,we
fimposedatadependencfieswfithfinthefinstructfionstoprevent
out-of-orderexecutfion. Weaccumuflatedtheexecutfiontfimes
foreachcflassover10,000repetfitfions,andthedfistrfibutfionfis
shownfinFfigure11-(a).Asfiflflustrated,the10%∼90%percentfifle
fintervaflsforeachtype(markedastwobrokenflfines)flargefly
overflap,whfichfishardflypossfibfleforanattackertodfistfingufish.

Program Executfion Tfime. As mentfionedfin §V-F,
OBFUSCUROensuresthataprogramcontfinuesexecutfinguntfifl
fitsnumberofexecutedcodebflocksreachesafixeduser-
configuredflfimfit.Inpartficuflar,OBFUSCUROaflflowstheuserto
definethetotaflnumberofC-Padexecutfionsaprogramshoufld
perform.Iftheprogram’sflogfictermfinatesbeforethatnumberfis
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Ffig.12:Performancebenchmarksfromourtestappflficatfions.The
averageperformanceoverheadofOBFUSCURO-CMOVfis83×and
forOBFUSCURO-AVX(sfimuflated)fis51×.

reached,OBFUSCUROcontfinuesexecutfingdummycodebflocks
tocompfletethenumberofC-Padexecutfions.

Inordertoprovethatthfisresufltsfinaunfiformexecutfion
tfimefirrespectfiveofthetargetprogrambefingexecuted,we
performedanexperfimentonadfiversesetofappflficatfionsas
shownfinFfigure11-(b).Intheexperfiment,wefixedthetotafl
numberofC-Padexecutfionsforeachoftheseappflficatfionsto
30,000andmeasuredthetotaflexecutfiontfime.Weaccumuflate
100executfionsforeachprogram,andpflotthedfistrfibutfionsof
them.Asshownfinthefigure,therangesoftotaflexecutfion
tfimesforthechosenevafluatfionsetflargeflyoverflaps,despfite
computatfionafldfiversfityoftheseappflficatfions.Thereasonforthfis
fisthateachC-Padexecutfion,asfiflflustratedbefore,fisbounded
atverysfimfiflarexecutfiontfimesfirrespectfiveoftheunderflyfing
CPUfinstructfions.Therefore,fitfisexpectedthattheprogram
executfiontfime(wfithsamenumberofC-Padexecutfions)wfiflfl
aflsobeverysfimfiflar.

VIII. PERFORMANCEEVALUATION

Inthfissectfion,wereportadetafifledperformancebenchmark
throughbothmficro-benchmarkfingcustomappflficatfionsand
macro-benchmarkfingbyrunnfingopenSSL[19].

ExperfimentaflSetup. Aflflourevafluatfionswereperformedon
Intefl(R)Core(TM)fi7-6700KCPU@3.40GHz(Skyflakewfith
8MBcache,8cache-sflficesand16-wayset-assocfiatfivfity)wfith
64GBRAM(128MBforEPC).OursystemranUbuntu16.04
wfithLfinux4.4.0.5964-bfit. Weperformedourexperfiments
usfingInteflSGXSDK[39]andtheInteflSGXdrfivers[40].
DuetothecurrentunavafiflabfiflfityofAVX-512forSGX-enabfled
computers,mostofourexperfiments(havfingflargecodeanddata
sfizes)usedCMOV-basedstash.However,weexperfimentedwfith
AVX2regfisterstofindtheexpectedbenefitofusfingtheregfister-
basedstashandhaveaccordfingflysfimuflatedtheperformance
fimprovementachfievedbyregfister-basedstashonourtarget
appflficatfions.

1)Mficro-Evafluatfion: Ffirstfly, westartbyprovfidfinga
detafifledperformanceevafluatfionresufltbyrunnfingseverafl
programswfithOBFUSCURO.Next,weshowtheperformance
fimprovementachfievedbythenoveflregfister-basedstashde-
sfignedbyOBFUSCURO.

Benchmarks. Weportedsfimpflebenchmarkfingappflficatfions
onOBFUSCUROfinordertoshowthefeasfibfiflfityofobfuscated

DataSfize(Bytes) CMOV(cycfles) AVX(cycfles) Improvement

1,024 272M 206M 32%
2,048 521M 388M 34%
4,096 1,044M 741M 41%
8,192 2,050M 1,481M 38%

Ffig.13:PerformancefimprovementachfievedbyusfingtheAVX2
regfisterextensfionsastheORAMstashcomparedtoCMOV-basedstash.

executfionusfingcommodfityhardwaresuchasInteflSGX.In
partficuflar,weportedadfiversesetofappflficatfionsfromsfimpfle
appflficatfionsflfikefindfingthemaxfimumwfithfinagfivenarrayto
compflexbfinarysearchfing.

Ffigure 12-(a) shows the performance shown by
OBFUSCURO whfiflerunnfingthetestsetofappflficatfions
descrfibedabove. Weaflsosfimuflatetheperformanceof
OBFUSCURO-AVX(theversfionofOBFUSCUROwhfichuses
regfister-basedstash.Thesesfimuflatedresufltsarebasedon
theexperfimentsweperformedonAVX2.Ingenerafl,the
performanceoverheadofOBFUSCURO-CMOVfisonaverage
83×andOBFUSCURO-AVXfis51×Theperformanceoverhead
ofOBFUSCUROfisexpectedsfincefithastocatertothepflethora
ofsfide-channeflspflagufingInteflSGX.Innopartficuflarorder,
theoverheadfisattrfibutedto:(a)codeaccesscontroflespecfiaflfly
deaflfingwfithbranch-aflfignment,(b)dataaccessnormaflfizatfion
and(c)sfide-channefl-resfistantORAM-basedaccessfinsfideIntefl
SGX.

Comparfison:CMOV-basedvsRegfister-basedStash. We
provfideacomparfisonoftheCMOV-basedstashversustheregfister-
basedstash. Weattempttoanswerthequestfion —what
fistheperformancebenefitattafinedbyusfingregfister-based
stashovertheCMOV-basedstash?Onecaveatfisthataflflour
experfimentsarebasedontheAVX2regfistersbutweexpect
theperformancebenefitstobesfimfiflarwhfifleusfingtheAVX-
512regfisters.Ffigure13attemptstofiflflustratetheperformance
benefitachfievedbyAVXextensfionsoverCMOVwhfifleaccessfing
dataofvarfiabflesfizethroughORAM.ComparedtotheCMOV-
basedstash,sfincetheregfister-basedstashperformsjustasfingfle
obflfivfiousaccessontotheAVXregfisters,fitoutperformsthe
CMOV-basedstash.Theaveragefimprovementfisaround30-40%.

2)Macro-Evafluatfion: Inordertoshowhowreafl-worfld
appflficatfionsperformwfithOBFUSCURO,weprovfideacase-
studywfithOpenSSL[19].Ffigure12-(b)showstheresufltof
ourevafluatfionsusfingOpenSSLwfithOBFUSCUROandwfithout
OBFUSCURO.Inthfisexperfiment,weperformavarfiabflenumber
ofconsecutfiveencryptfionsandcomparetheresuflts.Asthe
numberofencryptfionsfincrease,thedfifferencebetweenthe
performanceofOBFUSCUROandnatfiveaflsofincreases.The
reasonforthfisfisthatOBFUSCUROhastoperformafixed
numberofORAMoperatfionswhfichaddssfignfificantoverhead
per-encryptfionwhereastheper-encryptfionoverheadofnatfive
executfionfisverysmaflfl.

IX. DISCUSSION

Tfimfing Channefls. Based on ourstatfistficaflanaflysfis,
OBFUSCUROprovfidesaccurateexecutfion-tfime-normaflfizatfion
(see§VII-B).But,fitfishardtoconcflusfiveflyprovethat
OBFUSCUROwoufldfleaknotfimfingfinformatfionregardfless
oftheunderflyfingappflficatfion.However,fifeventhatfisthe
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case, we believe that OBFUSCURO can still be used to defeat
all timing channels. For example, OBFUSCURO could profile
the execution time of each code block of the target program
and, if a discrepancy is encountered, carefully modify the
code blocks such that they would have identical execution
times. This would, in turn, also provide accurate execution-
time-normalization. We believe that, if required, this profiling
and subsequent modification would not require help from the
program developer either. We leave a thorough exploration of
timing channels that could affect OBFUSCURO as part of future
work.

AVX-512. As shown in §VIII, the register-based stash can
provide a performance improvement over CMOV-based stash.
But, our experiments were performed on AVX2 instructions
due to the current unavailability of AVX-512 for SGX-enabled
processors. Intel states that AVX-512 register instructions result
in frequency reduction [41] which could potentially slow down
the entire application. However, there are two reasons why this
might not be an issue — (a) linux-based systems (in particular)
allow control of frequency scaling [42] and (b) users have
found out that only heavy (e.g., floating point) instructions
cause frequency scaling [43]. Especially for the latter, it has
been reported that load/store instructions on AVX-512 registers
(which OBFUSCURO is concerned with only) provide similar
performance as AVX2 registers.

Comparison with Cryptographic Schemes. On par with
what OBFUSCURO provides, we discuss following two security
properties: 1) computational confidentiality and 2) integrity.
Towards these security properties, we focus our discussion on
theoretical program obfuscation techniques, which construct
a virtual black box (VBB). We note that, unlike OBFUSCURO
which performs hardware-assisted secure remote computation,
theoretical program obfuscation techniques [44–46] do not rely
on specific architectural characteristics and thus are designed
to be resistant to memory-based side-channel attacks.

More specifically, two well-known cryptographic primitives,
fully-homomorphic encryption (FHE) and garbled circuits are
generally used for the program obfuscation, but both of them are
limited in terms of either performance and generality. In the case
of FHE [47], its performance overhead is in twelve orders of
magnitude scale in string search [48] without ensuring integrity.
On the other hand, garbled circuits [49] incur a performance
overhead of around four orders of magnitude. Moreover, they
cannot be used for generic programs (i.e., a loop structure
in a program cannot be supported), and the integrity cannot
be guaranteed similar to FHE. To ensure integrity, verifiable
computing techniques can be adopted but verifiable computing
itself imposes huge overheads (i.e., about 104 times [50]).

Compared to theoretical solutions, OBFUSCURO efficiently
achieves confidentiality and integrity, leveraging memory
protection and remote attestation mechanisms of SGX. From
the performance perspective, OBFUSCURO is a more practical
solution since it imposes two orders of magnitude performance
overhead, as opposed to twelve and four orders in the case
of FHE and circuit representation, respectively. OBFUSCURO
also supports generic programs since it retains the form of the
host-architecture instruction.

Protecting Input/Output. Traditional program obfuscation
assumes that the attacker has an oracle-like access to the obfus-

cated program. Therefore, the attacker can provide input and
get the corresponding correct output. However, OBFUSCURO
can be further leveraged to guarantee that an attacker does not
figure out the input/output either. For the input, since it is not
controlled by OBFUSCURO, we assume that the user of the
enclave will provide us a fixed-length encrypted memory buffer
to extract the input from. OBFUSCURO will execute for a fixed
time T based on the input and extract a fixed-size output from
the D-Tree at the end of T . Then, OBFUSCURO will encrypt
this data and send it back to the user.

Potential Applications. There are various potential appli-
cations for OBFUSCURO ranging from protection of a intel-
lectual property to securely patching vulnerabilities. Firstly,
OBFUSCURO can ensure that machine learning services re-
quiring huge computing resources can safely outsource their
computational load to cloud servers. For example, companies
like 23andMe [3] want to outsource genomic analysis but also
want to stay ahead of the competition by preventing the theft
of their algorithm. Secondly, developers can securely patch
vulnerabilities without disclosing the vulnerabilities through
the patches, rendering their exploitation highly unlikely.

Generic Side-channel Defense. OBFUSCURO can be utilized
as a general-purpose side-channel defense, whose main objec-
tive is to protect the input of a known program from attackers.
The attackers usually exploit unique memory access patterns
leaked from side channels consisted of caches, page fault, and
branch predictor [10, 12–15]. Since OBFUSCURO is specifically
designed to protect all these channels, OBFUSCURO can protect
the target program. Furthermore, we could utilize OBFUSCURO
to constrain its protection scope to a small, sensitive portion
of the code, which would result in performance gains as well.

Other Use-cases. Our current design for an oblivious execution
framework is SGX-specific. However, we believe its design
characteristics and optimization techniques are general, which
can be applied to other trusted platforms such as AEGIS [51],
Ascend [52], XOM [53], Bastion [54], Sanctum [55]. For
example, our register-based stash (§V-B1) can be considered
as a generic optimization for ORAM, if the underlying trust
architecture shares any of memory-related subsystem such as
cache, TLB, MMU, and DRAM.

X. RELATED WORK

SGX-based Systems. Haven [56], Graphene [57, 58] and
Panoply [59] provide LibOS for SGX, which enable easier appli-
cation porting and prevent Iago attacks [60]. OpenSGX [61] pro-
vides an open research framework for running SGX applications.
VC3 [62] provides oblivious data analytical algorithms such as
MapReduce [63]. SGX-Shield [24] performs fine-grained ASLR
within SGX environments. Some of OBFUSCURO’s design
schemes, particularly how OBFUSCURO breaks a program
into smaller ORAM-compatible blocks, have been inspired by
SGX-shield. Ryoan [64] provides a secure framework to port
Native Client (NaCl) [65] in Intel SGX. SCONE [66] provides
performance optimizations and ports containers within SGX.
Eleos [67] provides a framework to use non-enclave space to im-
prove enclave performance. Glamdring [68] provides automatic
partitioning within enclave programs. Other works [69–71]
consider how to efficiently deliver cryptographic primitives
such as multi-party computation and functional encryption
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using Intel SGX. These systems do not consider side-channel
issues within SGX and can be used together with OBFUSCURO.

Attacks on SGX. SGX is vulnerable to both page fault [10]
and page table [11] attacks. Recent works [12–14] have shown
that cache-based attacks are possible with an SGX enclave.
SGX has also been found to be vulnerable against the branch-
prediction attack [15, 72]. Wang et. al [73] provide an overview
of the attack vectors against SGX and the limitations of current
defense solutions.

SGX-compatible Defenses. There have been various de-
fenses [74, 75] proposed against the page table attacks. T-
SGX [74] uses Transactional Memory (TSX) to run a program.
However, T-SGX is vulnerable to the improved controlled
channel attack [11]. Cloak [76] also utilizes TSX as a defense
primitive, but it only considers cache side channel attacks.
Another work [75], provides a way to prevent page faults from
the OS-level attacker by periodically modifying the program’s
memory access patterns. Ohrimenko et al. [77] show how to re-
adapt ML-algorithms to exhibit data-oblivious memory access
patterns. For cache-based attacks, the previous solutions [78–
80], for non-SGX environments, are not directly applicable
since most of them require OS support. Compared to these
defenses, OBFUSCURO proposes a generic security framework
against all memory-based side-channel attacks. Obliviate [16]
and ZeroTrace [17] provide access to files and data structures
respectively using secure ORAM implementations. Compared
to OBFUSCURO, their scope of protection is limited, i.e., files
and data arrays respectively.

Hardware and Software-based Oblivious Systems. Previous
work has alluded to the concept of creating oblivious sys-
tems based on custom hardware [8, 29, 31], software-level
defenses [18, 32] or hybrid [30]. All aforementioned systems
use variants of ORAM [9] to achieve oblivious execution. Out of
all these works, HOP [8] and Phantom [29] are the most similar.
However, both Phantom and HOP use RISC-V processors to
implement secure ORAM controllers while OBFUSCURO runs
on commodity trusted hardware.

XI. CONCLUSION

This paper presents OBFUSCURO, the first system which
provides program obfuscation using commodity trusted hard-
ware. OBFUSCURO systematically protects the SGX enclave
against information leakage through all side-channels, thereby
neutralizing all memory and timing footprints to create a virtual
black box for obfuscated program execution. Our evaluation
shows that OBFUSCURO can provide strong obfuscation guar-
antees within Intel SGX while performing much faster than
existing cryptographic schemes and being more deployment-
friendly than existing system-based solutions.
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